由于不锈钢焊管焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),急需采用合理的方法予以控制。
钢结构的不锈钢焊管焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。
1、焊接变形的控制措施
全面分析各因素对不锈钢焊管焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。
1.1焊缝截面积的影响
不锈钢焊管焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响
一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法的影响
多种不锈钢焊管焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。
1.4接头形式的影响
在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。
1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
1.5焊接层数的影响
1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施:
1)减小不锈钢焊管焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。
2)对屈服强度345MPa以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度;优先采用热输入较小的焊接方法,如CO2气体保护焊。
3)厚板不锈钢焊管焊接尽可能采用多层焊代替单层焊。
4)在满足设计要求情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。
5)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。
6)T形接头板厚较大时采用开坡口角对接焊缝。
7)采用焊前反变形方法控制焊后的角变形。
8)采用刚性夹具固定法控制焊后变形。
9)采用构件预留长度法补偿焊缝纵向收缩变形,如H形纵向焊缝每米长可预留0.5mm~0.7mm。
10)对于长构件的扭曲,主要靠提高板材平整度和构件组装精度,使坡口角度和间隙准确,电弧的指向或对中准确,以使焊缝角度变形和翼板及腹板纵向变形值与构件长度方向一致。
11)在焊缝众多的构件组焊时或结构安装时,要采取合理的焊接顺序
12)设计上要尽量减少焊缝的数量和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。
泰州全得不锈钢有限公司主要生产产品有:不锈钢带、不锈钢打包带、喉箍钢带、戴南不锈钢焊管、不锈钢圆管、不锈钢方管、不锈钢矩形管、不锈钢椭圆管。产品广泛应用于电子、信息、航天、能源、化工、轻纺、医药、建筑、桥梁、装饰、各种太阳能制造等领域。产品畅销国内外。以市场为先导,以技术为支持,超越客户期望,实现双盈目标是我们的经营理念,我们始终以合理的价格,完善的服务,优质的产品,惠同国内外新老客户共谋发展。